Magnets

D. Naples April 10, 2010

Near Hall Subsystems

- ► Hydrogen/Deuterium bubble chamber (+ downstream tracker)
- ► Fine-grained H2O trackers
 - Straw tube (HiResMnu)
 - Scintillator-based
- ► LAr TPC
- ► Spectrometer magnet for in-situ production measurements

Magnetizing entire ND Hall has also been proposed.

Magnet Requirements

Main purpose for magnetic field:

- ▶ Beam flux determination from CC ν_{μ} and $\overline{\nu}_{\mu}$ interactions
 - Momentum analyze muon tracks that are not stopped in the fiducial detector volume.
 - Measure charge-sign for all muon tracks.

Other uses:

- ▶ Measure charge-sign of e^+/e^- tracks to constrain ν_e beam background and production models.
- Momentum analyze and measure charge of individual particles in neutrino interactions.

What drives the magnet requirements?

- Ultimately need input from beam and measurement strategy working group

 - ▶ How the flux will be measured and used.
 - \triangleright How important is it to separate the components of the flux (ν_e vs. $\overline{\nu}_e$)

New or Recycled Magnets?

Two types:

- ► Large aperature magnet
 - Not easy to come by...
- Downstream tracker
 - Spectrometer or magnetized iron toroid

Identify existing candidate magnets.

- ► KTeV (more details forthcoming from D. Jensen)
 - Size : 2m gap, 2.85m wide, 3m long
 - ▶ Field up to 0.5 T
 - Availability: after E906 (should be completed before Nova shutdown in 2012 or end of 2013 at the latest)
- ► CERN MNP 101 Magnet (see Kevin's talk contact?).
 - ⊳ Size : 1.2m gap, 0.8m wide, 2m long

 - Availability ?
- ► Others ???

Where to Start?

Needed for CDR

- ► Initial specs for each subsystem:
 - Required aperture size (or radius for toroids)

 - Mechanical constraints
- ▶ What drives the specs.
- Devote a Tuesday meeting to this discussion (before end of April).
- ▶ Review of magnet requirements and specs ? (early July?)

Cost Estimates

► Cost of constructing UA1 magnet $(3 \times 3 \times 7 m^3)$ from scratch (quoted from G. Petrucci CERN - see R. Petti Docdb 435)

Materials

Magnet yoke	\$2.87M
Winding	\$0.75M
Power supply	\$1.0 M
Cooling	\$0.5 M
Other	\$0.6 M
Total	\$5.7 M

(add Engineering estimate based on 25% total cost = \$1.4 M) Total Cost \$7.1M